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Abstract
Dielectric properties of the relaxor ferroelectric ceramics PLZT 8/65/35 and
9.5/65/35 were studied in the broad frequency range of 100 Hz–1 THz at low
temperatures below the freezing temperature. Nearly frequency-independent
dielectric losses were observed up to 1 GHz on cooling down to 10 K. Their
magnitude decreases exponentially with temperature, but remains remarkable
high down to 10 K. A Landau-type thermodynamic model based on the
perovskite structure near the morphotropic phase boundary is proposed for
calculating the energy barriers for polarization reversal near the polar cluster
boundaries and explaining the broad distribution function of relaxation times,
which fits the observed frequency dependences of permittivity and losses below
1 GHz. High dielectric losses in the submillimetre region were explained by
shear wave emission of vibrating polar cluster walls in an ac electric field and
by piezoelectric resonances on polar clusters.

1. Introduction

The dielectric permittivity of ordered dielectric crystals is usually determined by polar phonon
contributions in the IR frequency range plus electron contributions due to the absorption
processes in the visible and UV range. Below the polar phonon frequencies the real part (ε′) of
complex permittivity ε∗ = ε′− iε′′ is dispersionless and very small intrinsic dielectric losses ε′′
are determined just by multiphonon absorption. Microscopic phonon transport theory shows
that the losses in the microwave and lower frequency range should be proportional to frequency
(ε′′ ∝ ω) around and below room temperatures [1]. This behaviour is frequently used for the
estimation of intrinsic dielectric losses in microwave materials [2]. However, in disordered
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dielectrics the situation becomes more complicated and an additional dispersion appears below
the phonon frequencies. It is usually broader than the Debye relaxation and can be described by
the Cole–Cole, Havriliak–Negami or other more general empirical formulae [3]. Relaxation
processes have their origin in the anharmonic motion of disordered ions, charged defects,
ferroelectric domain walls, etc, in a complex potential landscape. The mean relaxation time
frequently increases (relaxation frequency softens) on cooling according to the Arrhenius
law, implying that the dynamics is governed by thermally activated motion over temperature-
independent potential barriers. Most dielectrics with a permittivity higher than ∼100 exhibit
some dielectric relaxation, with the exception of pure incipient ferroelectrics like SrTiO3 and
KTaO3, whose large ε′ is completely described by phonon contributions (above all, by the soft
phonon contribution).

In some ionic conductors [4, 5] and highly disordered dielectrics (like polymers [3],
dipolar glasses [6–8], relaxor ferroelectrics [9–13], etc, [14]) nearly frequency-independent
dielectric losses ε′′ were observed, which can be described by a uniform distribution of
relaxation times [12, 14]. The constant losses (corresponding to 1/f noise [4, 5]) were observed
mostly at low temperatures, which seems to be a universal behaviour of disordered dielectrics.
Understanding the origin of such behaviour is a challenging problem.

Among the materials listed above, relaxor ferroelectrics have the highest permittivity and
also the highest dielectric losses. They exhibit a broad and high maximum of ε′(T ), whose
position Tm shifts to higher temperatures with increasing measuring frequency. The dielectric
properties of relaxors were studied mostly at temperatures near and above the maximum
of ε′(T ). Only a few papers [11–13] were devoted to the dielectric dispersion of relaxors
below the so-called freezing temperature Tf . The Lubljana group [9–11, 13] studied PMN
and PLZT relaxors below 1 MHz and showed that the observed 1/ f noise corresponds to
anomalous broadening of distribution of relaxation times. The characteristic relaxation time
τ (e.g. average or maximal cutoff) rapidly increases up to the macroscopical timescale when
the temperature decreases towards Tf and obeys the Vogel–Fulcher law

τu = τ0 exp
Ea

k(T − Tf)
. (1)

Here τ0 is a constant, and Ea and k are the activation energy and Boltzmann constant,
respectively.

One of the best investigated relaxor ferroelectric systems concerns the transparent
ceramics of lanthanum modified lead zirconium titanate (Pb1−x Lax)(ZryTi1−y)1−x/4O3 (PLZT
100(x /y/1 − y)), in particular the compositions PLZT x /65/35 with 7 < x < 12, which occur
close to the morphotropic phase boundary separating rhombohedral and tetragonal structures
of ferroelectric clusters and possessing high values of many material coefficients [15, 16].
The crystal structure without a bias electric field remains as simple-cubic perovskite (Pm3̄m,
Z = 1) in the entire temperature range [17]. The ferroelectricity can be induced only by a bias
field. Nevertheless, ageing both above and below Tm has a strong influence on the dielectric
response of PLZT [18]. It provides evidence of some instability in the cubic paraelectric phase
and the necessity to take into account the history of the sample in the non-ergodic phase below
the freezing temperature. At higher temperatures up to the so-called Burns temperature TB

(for PLZT x /65/35, TB � 620 K) [19] corresponding to the ferroelectric phase transition in
the pure PbZryTi1−yO3, there is evidence of fluctuating local dipoles attributed to nanoscopic
dynamic polar clusters. Their size increases slightly on cooling and saturates at a value about
50 nm below 370 K. Their concentration increases on cooling too [20]; however, there is still
no agreement whether the whole sample volume consists of polar clusters at low temperatures
or not (e.g. Mathan et al [21] claim that only 25% of the sample volume becomes polar at 5 K
in the PMN crystal, while Chernyshov et al [22] declare a single phase polar structure at low
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temperatures). The diffraction experiment on PLZT revealed that the local structure of polar
clusters corresponds to the rhombohedral space group R3c with a doubled unit cell due to the
tilting of oxygen octahedra [20].

Numerous earlier dielectric studies exist on relaxor PLZT, with much attention being paid
to the problem of freezing, ageing, influence of bias field, hydrostatic pressure and non-linear
phenomena near and above Tf . However, almost all the recent dielectric measurements were
performed only in the standard low-frequency range of 10–106 Hz representing just a small
part of the very wide dielectric dispersion. On the other hand, from the IR and submillimetre
measurements [12] it becomes clear that the polar phonon modes’ contribution to the relative
permittivity in PLZT ceramics does not exceed 300 near room temperature and increases only
slightly on heating towards TB. A comparison with the low-frequency permittivity shows that
the main dielectric dispersion occurs in the microwave (MW) range in the whole temperature
range above Tf . Due to the very high permittivity and loss values, measurements in the MW
range are extremely difficult. Four papers dealing with MW properties of PLZT ceramics are
known to the authors [12, 23–25], but only one [12] was performed below room temperature
also. Single, strong polydispersive relaxation was observed in the gigahertz range with the
Arrhenius-type temperature dependence (above 400 K) of the mean relaxation time [23].
Further cooling results in strong broadening of the spectra with the longest relaxation time τu

following the Vogel–Fulcher law (1) with Tf � 230 K reflecting an increase in intercluster
correlations, and with the shortest (τl) relaxation time of about 10−12 s [12]. The spectrum
was described by the symmetric distribution of relaxation times that becomes so broad below
room temperature that the losses become independent of frequency in the measurable range.
It was also argued that the distribution of relaxation times reflects the distribution of activation
energies for the hopping of dynamically disordered ions over barriers in a multi-minimum
potential [12, 14].

This contribution is devoted to extending previous broad-frequency studies deep into
the non-ergodic phase. Dielectric spectra of relaxor PLZT 8/65/35 and PLZT 9.5/65/35
were investigated in the temperature range of 10–250 K and in the broad frequency range of
102–1012 Hz. In order to explain the frequency-independent dielectric losses revealed down
to the lowest temperatures, a simple thermodynamic model based on the perovskite crystal
structure near the morphotropic phase boundary is proposed.

2. Experimental details

The details of the preparation of the hot-pressed PLZT 8/65/35 and 9.5/65/35 ceramics have
been presented elsewhere [26]. The low-frequency (LF) dielectric response in the range of
100 Hz–1 MHz was obtained using an HP 4192A impedance analyser assembled with an He-
flow Leybold cryostat (used down to 10 K) and custom-made furnace. Each low-temperature
measurement was performed after heating the sample above Td and slow (1 K min−1)
cooling to erase the memory effects. Dielectric measurements in the high-frequency (HF)
range of 1 MHz–1.8 GHz were performed using a computer-controlled HF dielectric
spectrometer equipped with an HP 4291B impedance analyzer, a NOVOCONTROL BDS 2100
coaxial sample cell and a SIGMA SYSTEM M18 temperature chamber (operating range
100–570 K). The dielectric parameters were calculated taking into account the electromagnetic
field distribution in the sample.

The submillimetre wavelength dielectric response was measured by the technique of time
domain terahertz (THz) spectroscopy and backward-wave oscillator spectroscopy. In both
techniques the amplitude and the phase of the transmission function has been measured in
the range of 200–550 GHz. Real and imaginary parts of permittivity were directly calculated
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Figure 1. Temperature dependence of the real and imaginary parts of the complex permittivity of
PLZT 8/65/35 at selected frequencies. The data were taken on cooling.

from the measured transmission function. To extend the frequency range where the samples
are transparent, the smallest possible thickness of 20 µm was achieved for plane-parallel discs
of 6 mm diameter. An He-cooled cryostat with Mylar windows was used for measurements
down to 10 K.

3. Results

The temperature dependences of the real and imaginary parts of the complex dielectric function
at selected frequencies for PLZT 8/65/35 and 9.5/65/35 are shown in figures 1 and 2. The
temperature dependences are qualitatively the same in both samples; only the maxima of ε′ and
ε′′ in PLZT 8/65/35 are higher and shifted to higher temperatures. Discontinuities in LF data at
300 K are due to a short interruption (∼1 h) of measurements during transmittal of the sample
from the furnace to cryostat. We should note that if the low-temperature LF measurements were
done without previous heating above room temperature or with an applied electric bias field,
an additional maximum in ε′(T ) showing up the ferroelectric phase transition arises below Tm.
Therefore the LF data were always taken on cooling after heating above Td = 620 K, HF data
after heating only to 550 K (higher heating was not possible with our HF temperature chamber).
A lower annealing temperature before HF measurement is responsible for the discontinuity of
ε′ between LF and HF data. Our LF ε′(T ) data are somewhat higher than those in [12], because
the latter data were obtained after annealing only to 530 K. Submillimetre spectra were obtained
mostly without heating above room temperature prior to the measurements, since no influence
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Figure 2. Temperature dependence of the complex permittivity of PLZT 9.5/65/35 taken on cooling
at selected frequencies.

of the heating on the spectra was observed. Dielectric data above the freezing temperature
taken with and without an electric bias field have already been analysed many times [12];
therefore we will concentrate only on the low-temperature properties.

Figures 3 and 4 show the frequency dependence of the complex permittivity of both
samples at selected temperatures. Frequency-independent losses (within the accuracy of our
measurements) are seen below 1 GHz. The jumps between LF and HF ε′(ω) data are due to
different sample histories and different experimental setups. The losses in the THz range show
smaller temperature dependence and do not fit the HF data below 200 K, giving evidence on
additional dispersion in the MW and submillimetre range at low temperatures. Because the
THz relaxation is almost temperature independent, it does not behave as a thermally activated
process. Its possible assignment is that it is caused by vibration (breathing) of cluster walls
in the ac electric field, which causes the emission of shear acoustic waves, or by piezoelectric
resonances on cluster boundaries. Similar mechanisms (applied on ferroelastic–ferroelectric
domains) were used to explain the dielectric relaxation observed in various ferroelectric
ceramics in the range 108–109 Hz [27, 28]. Arlt et al [27] have shown that the absorption
of electromagnetic waves due to the emission of shear waves by domain walls can contribute
several hundred times to static permittivity, while the contribution of acoustic resonances on
the cluster wall is about one order of magnitude smaller [28].

The relaxation frequency fR of the Debye relaxation due to the emission of sound waves
from the domain walls depends on the effective shear elastic constant c∗

55 of the ceramics, on



6022 I Rychetský et al

Figure 3. Frequency dependence of the real and imaginary parts of the complex permittivity of
PLZT 8/65/35 at various temperatures. Note the frequency scale change.

the density of the material ρ and on the width d of the domains:

fR =
√

c∗
55/ρ

πd
. (2)

In the case of acoustic resonance, the resonant frequency is fres = ν33/2d , where ν33

means the sound velocity. In relaxor ferroelectrics we must assume polar clusters instead of
ferroelectric domains. The size of polar clusters is 100–1000 times smaller than the size of
ferroelectric domains; therefore the relaxation frequencies of both the mentioned relaxations
shift to submillimetre range and could explain the observed submillimetre dielectric loss (see
figures 3 and 4).

Let us now discuss the dielectric dispersion at lower frequencies. In [12] it was shown
that at low temperatures the distribution of relaxation times is so broad that the measured
frequencies ω fulfil the relation 1/τu � ω � 1/τl (τu and τl are the upper and lower cutoffs
of relaxation times) and in this case ε′ and ε′′ can be written as [12]

ε′(ω) = ε∞ − B(T ) ln(ωτl) (3)

ε′′(ω) = π

2
B(T ). (4)

Notice that these formulae fulfil the Kramers–Kronig relations. The B-parameter is the
temperature-dependent parameter expressing the strength of the distribution function [12].
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Figure 4. Frequency dependence of the complex permittivity of PLZT 9.5/65/35 at various
temperatures. Note the frequency scale change.

It can easily be obtained from the value of ε′′ or from the slope of ε′(ln(ω)). The temperature
dependence of the B-parameter in both PLZT ceramics is plotted in figure 5. In [12], B(T )

was fitted above 200 K by power law and exponential dependences, but our data at lower
temperatures show that the exponential fit is better. The following formula was used:

B(T ) = B0(e
DT − 1) (5)

and the parameters of the fit are summarized in the caption to figure 5. The fit of B(T ) with
the Arrhenius law was not acceptable.

The origin of the high dielectric losses below the freezing temperature is rather surprising.
Usually it is assumed that the losses near and above Tm originate from the dynamics of polar
clusters, but polar clusters should be frozen below Tf . Obviously, whole clusters do not become
frozen. The following theory will try to explain the dielectric loss below Tf by suggesting that
the ions in the cluster-boundary regions are still locally diffusing (hopping).

4. Model

We assume that at low temperatures below Tf PLZT can be considered as consisting of frozen
clusters and of residual mobile dipoles residing in intermediate regions, which can be loosely
considered as being either the cluster boundaries or the remaining still unfrozen dynamic
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Figure 5. Temperature dependence of the B-parameter obtained from figures 3 and 4 and
equations (4) and (5). The dashed curves are the results of the fit with equation (5). Parameters
of the fit: PLZT 8/65/35: B0 = 10.2 ± 1.1, D = (10.5 ± 0.4) × 10−2 K−1; PLZT 9.5/65/35:
B0 = 6.4 ± 1.1, D = (13.0 ± 0.6) × 10−2 K−1.

regions between clusters. The intermediate regions presumably occur around La3+ ions or
other defects. The dynamic response below the phonon frequencies is suggested to arise
from the thermally activated motion of the cluster boundaries pinned by the defects (breathing
motion of the clusters) and by flipping the whole dynamic polar regions. The former is
described in [29] as fluctuations of two-dimensional walls hindered by the random potential
and exhibiting multirelaxational character. The latter mechanism, which we shall consider
further, assumes that a nucleus [30] of one of several polar states allowed by the perovskite
structure can occur between two frozen domain states (clusters), and mutual reversal of these
polar states is effortless in the case of weak anisotropy.

We suppose that the main contribution to the dielectric response comes from this thermally
activated reversal of the polar regions between the frozen clusters. In order to characterize
this reversal of the polar dynamic regions, the landscape of the free energy density is required.
The cluster of volume v can be described by the Landau–Devonshire free energy density for
perovskite-like cubic crystals [31, 32]:

f = 1
2α(η2

1 + η2
2 + η2

3) + 1
4β1(η

2
1 + η2

2 + η2
3)

2 + 1
2β2(η

2
1η

2
2 + η2

1η
2
3 + η2

2η
2
3). (6)

In order to describe stable orthorhombic and monoclinic phases the sixth-order and the eighth-
order terms are needed, respectively [33]. For simplicity, such a case is not considered. The
gradient terms that play a role in regions of spatially varying order parameter and, in fact,
influence the appearance of polar nuclei between frozen domain states [30] are neglected
for simplicity, and could be considered as being encountered by an averaging procedure in
the coefficients of (6), e.g. as a shift of the phase transition temperature [34]. Doubling the
primitive unit cell in the rhombohedral structure as well as higher order terms in the free energy
are, for simplicity, neglected too. The order parameter P = (η1, η2, η3) has the meaning of
polarization, the existence of dipole moment being attributed mainly to the displacement of
Pb2+ ions. At low temperatures (T < TC), α = α0(T − TC) < 0 and the free energy landscape
provides 27 possible states representing the maxima, minima and saddle points of the free
energy. There are six tetragonal states [31, 32]

(η1, η2, η3) = (±ηt, 0, 0), (0,±ηt, 0), (0, 0,±ηt), (7)

where ηt = √−α/β1 and the corresponding free energy density is ft = −α2/4β1.
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∆ P

P 1 P 2

Figure 6. Two adjacent rhombohedral states P1, P2, |P1| = |P2| = ηr . The difference 
P is a

change of polarization during a cluster ion jump, 
P ≡ |
P| = 2
√

3
3 ηr . The average polarization is

〈P〉 = 1
2 (P1 +P2) and the instantaneous polarization vectors are P1 = 〈P〉+ 
P

2 and P2 = 〈P〉− 
P
2 .

Further, there are 12 orthorhombic states

(η1, η2, η3) = (±ηo,±ηo, 0), (±ηo, 0,±ηo), (0,±ηo,±ηo), (8)

where ηo = √−α/[2(β1 + β2/2)] and the corresponding free energy density fo =
−α2/[4(β1 + β2/2)], and eight rhombohedral states

(η1, η2, η3) = (±ηr,±ηr,±ηr), (9)

where ηr = √−α/[(3β1 + 2β2)] and the corresponding free energy density fr =
−α2/[4(β1 + 2β2/3)]. In figure 6 two adjacent rhombohedral states are schematically shown.
The local free energy maximum corresponding to the cubic paraelectric state occurs at (0, 0, 0)

with fmax = 0.

4.1. Distribution of relaxation times

Comparing the free energy density of states (7)–(9) one can show that the stability of the
tetragonal or rhombohedral phase at low temperatures depends on the sign of the coefficient
β2 at the anisotropic term, while the orthorhombic state always corresponds to a saddle point.
For β2 > 0, the tetragonal phase (7) is the stable one and the easiest way to flip the dipole of
the polar region (below Tf we assume the flipping of dipoles only in the polar nuclei in the
cluster boundary region) of volume v is to rotate it by 90◦ (from the (001) to (010) or (100)
direction) overcoming the orthorhombic saddle point ((011) direction) (8). The corresponding
activation energy of the dipole rotation is

U(v) = v( fo − ft) = vα2

4β1

(
1 − 1

1 + β2/2β1

)
≈ α2

4β1

vβ2

2β1
= η4

t

8
vβ2, β2 > 0, (10)

where the approximation is valid for β2 � β1.
For β2 < 0, the rhombohedraldistorsion (9) is the stable one and the easiest dipole rotation

is 70.5◦ (e.g. from the (111) to (111̄) direction), again overcoming the orthorhombic saddle
point. The corresponding activation energy is

U(v) = v( fo − fr) = vα2

4β1

(
1

1 + 2β2/3β1
− 1

1 + β2/2β1

)

≈ α2

4β1

−vβ2

6β1
= −η4

t

24
vβ2, β2 < 0. (11)
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The relaxation time attributed to such an activation process ((10) or (11)) is

τ (v) = τ0eU(v)/kT , (12)

where the attempt frequency 1/τ0 is of the order of the soft phonon frequency. Disorder can
cause fluctuations of the free energy expansion coefficients that vary throughout the sample
and those most relatively influenced will be those of the smallest values. Far below TC, the
coefficients |α| and β1 that both determine the absolute value of the order parameter are assumed
to be much higher than the anisotropic coefficient |β2|. In the perovskite-like structures the
small value of the coefficient |β2| can appear in systems occurring close to the morphotropic
boundary. The small value of |β2| means that it is easy to rotate the dipole and in the limit of
zero β2 value it can be done without any free energy change. Under such circumstances the
characteristics of the relaxation processes connected with the dipole reversal will be controlled
mainly by this anisotropy coefficient β2, and we further assume that it varies due to the disorder
across the sample with some probability density p(β2). TEM data in the relaxor phase of PLZT
indicate the rhombohedral distortion at the microscopic level [20], implying β2 < 0. However,
in the residual dynamical clusters at low temperatures positive values of β2 also cannot be
excluded. Further, we consider β2 � 0 and the case when the values are also positive could
be treated in a similar way. Then the distribution of relaxation times becomes

g(ln τ ) d ln τ = p(β2)
24kT

vη4
t

d ln τ, (13)

where the relation between β2 and the relaxation time τ follows from equations (11) and (12),

ln τ/τ0 = η4
t

24kT
v|β2|. (14)

For the frozen disorder, the probability density p(β2) is temperature independent and is
characterized by the mean value β2,av = β2 and the second moment 
2

β2
= (β2,av − β2)2, 
β2

being the width of the probability distribution. For our purposes it is convenient to introduce
the lower and upper values of β2 as β2,l = β2,av + 
β2/2 and β2,u = β2,av − 
β2/2 (note
that β2,u < β2,l < 0 and 0 � |β2,l| < |β2,u|). The distribution of relaxation times g(ln τ ), in
contrast with p(β2), becomes temperature dependent with the mean relaxation time

ln τav/τ0 = η4
t

24kT
v|β2,av|. (15)

Its width


ln τ = 
β2

vη4
t

24kT
(16)

and the lower and upper values of the relaxation times are

ln τl/τ0 = η4
t

24kT
v|β2,l| (17a)

ln τu/τ0 = η4
t

24kT
v|β2,u|, (17b)

respectively. Further, we consider the uniform distribution of p(β2):

p(β2) =
{

1/
β2 for |β2,l| < −β2 < |β2,u|;
0 otherwise.

(18)

It is important to stress that although the width 
β2 is a temperature-independentcharacteristic
of the disordered system, the distribution of relaxation times becomes temperature dependent
with Arrhenius-like softening and broadening on cooling. Note that the distribution of
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relaxation times is equivalent to the distribution of energy barriers in a multi-well potential.
When the lower cutoff is greater than zero, |β2,l| > 0, the lowest barrier is non-zero and a
gap exists between the band of relaxation frequencies (upper relaxation frequency cutoff 1/τl)
and the attempt phonon frequency ω0 = 1/τ0. In this case 1/τl(T ) follows the Arrhenius law
as was observed in PMN [10]. For β2,l = 0 there is the continuous spectrum of relaxation
frequencies from the lower cutoff 1/τu to the phonon frequency ω0. In this case the upper
frequency cutoff 1/τl = 1/τ0 is, according to equation (17a), temperature independent and
broadening of the relaxation time spectrum occurs via the Arrhenius-like decrease of the lowest
frequency 1/τu, equation (17b).

4.2. Permittivity

We consider a system composed of two subsystems, the matrix of frozen polar clusters with
dielectric dispersion in the phonon frequency region only, and the residual dynamical regions
at the cluster boundaries with the characteristic relaxation times at lower frequencies. The
dielectric strength can be estimated using the fluctuation–dissipation theorem. For this we
consider the same (average) volume v of each microscopic dynamical region, which do not
interact, and the volume fraction of such regions in the sample is denoted by C (i.e. the 1 − C
volume fraction of the system is frozen). The main contribution to the dielectric response comes
from the thermally activated hopping of dipoles in cluster boundaries (the phonon contribution
is small, of the order of 102, while static ε0 is of the order of 103). During the polarization
reversal between two adjacent rhombohedral states the polarization changes by 
P = 2

√
3

3 ηr ,
and its component along the applied electric field is 
P cos φ, where φ is the angle between
the field and the change of polarization 
P (figure 6). Then the static susceptibility can be
approximately written as

χ = C
v〈P2〉

kT
= C

v(
P/2 cos φ)2

kT
= C

vη2
r

6kT
≈ C

vη2
t

18kT
(1 − 2β2,av/3β1), (19)

where the statistical independence of φ and β2 is assumed, 〈·〉 is a thermal average and the
overline denotes averaging over the dynamical cluster orientations. The permittivity is then [3]

ε(ω) = ε∞ + 
ε

∫ ∞

0

g(ln τ )

1 + iωτ
d ln τ/τ0, (20)

where 
ε = 1 + 4πχ ≈ 4πχ , and considering the uniform distribution for simplicity the
explicit expressions for the real and imaginary parts of permittivity can be obtained:

ε′(ω) = ε∞ +
B

2
ln

(
1 + ω2τ 2

l

exp(−2
ln τ ) + ω2τ 2
l

)
(21a)

ε′′(ω) = B arctan

(
ωτl[1 − exp(−
ln τ )]

ω2τ 2
l + exp(−
ln τ )

)
(21b)

where

B = 
ε


ln τ

= 4π
C

3η2
t

4(1 − 2β2,av/3β1)


β2

. (22)

The maximum of losses is equal to

ε′′(ωmax) = B arctan

(
τu − τl

2
√

τuτl

)
≈ π

2
B (23)

and occurs at ωmax =
√

τ−1
u τ−1

l . For a broad distribution when the measuring frequency fulfils
the relation 1/τu � ω � 1/τl or equivalently exp(−
ln τ ) � ωτl � 1, constant losses of
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Figure 7. Imaginary part of complex permittivity. The parameters used are: ω0/ωl = 1, 
ε = 10
and 
ln τ = 0.1 (curve 1); 
ln τ = 5 (curve 2); 
ln τ = 10 (curve 3); 
ln τ = 20 (curve 4). The
frequencies are related to the phonon frequency ω0.
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Figure 8. Imaginary part of the total complex permittivity. The parameters used are: 
ε = 10,

ln τ = 14, Gph = 10, γ/ω0 = 1, and (a) 1/τl = ω0 (i.e. the upper frequency cutoff coincides
with the phonon frequency); (b) 1/τl = 10−2ω0 (i.e. there is a gap between the cluster relaxation
spectrum and the phonon frequency ω0). The phonon part is taken schematically as a single polar
phonon contribution ε′′

ph = Gphγω/[(ω2
0 − ω2)2 + γ 2ω2], where Gph is the oscillator strength.

the value of π B/2 occur. For a narrow distribution, when τu − τl → 0, the permittivity (21)
reduces to the Debye relaxation with the relaxation time τ = τl = τu, the maximum of losses
ε′′(ωmax) = 
ε/2 and ωmax = τ−1. In figure 7 the imaginary part of complex permittivity (21b)
is shown for several widths of the distribution of relaxation times and in figure 8 the total
dielectric loss consisting of the phonon and the ionic hopping contributions is plotted. The
gap between the phonon frequency ω0 and the broad distribution of relaxation times can show
up as a minimum in the dielectric loss spectrum.

At low temperatures the order parameter ηt in clusters is saturated and under the assumption
that the volume fraction of dynamical clusters is fixed (i.e. C does not depend on temperature)
the maximal losses (23) are temperature independent. This is a direct consequence of the
fact that the clusters are assumed to be independent Debye dipoles with Curie behaviour (19),
and the width of the distribution of relaxation times follows the same temperature behaviour.
At the same time, the entropy S = N ln 2 (N = CV/v is the number of clusters, V is
the volume of the sample) is constant down to zero temperature, where it drops to zero.
In real samples the power decrease of entropy is common, i.e. S ∝ T n . For that reason
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we make an additional assumption about the dynamics of the system—we assume that the
simple picture of independent polar nanoregions is reliable for short enough times only when
ln τ < ln τoff , where τoff is a temperature-independent quantity (still beyond the available
experimental window). The clusters with long enough relaxation times cannot be considered
as isolated Debye dipoles and their slowing down is expected to be faster than according to
the Arrhenius law. Therefore we assume that the clusters with relaxation times longer than
τoff are trapped inside a single well, their dipoles do not rotate and they do not contribute
to the response. The equations (22) and (23) remain unchanged, but the volume fraction of
dynamical polar regions

C = C0 ln τoff/τ0

η4
t v|β2,u| 24kT (24)

becomes temperature dependent (for τoff � τu, C = C0), and the entropy S ∝ T . The value
of frequency-independent losses (23) depends on the temperature as ε′′(ω) ∝ T . This is in
accord with the best experimental fit of the B-parameter (see figure 5) that also exhibits linear
temperature dependence at low temperatures, B = B0(eDT − 1) ≈ B0 DT .

5. Conclusions

Thorough broad-frequency low-temperature dielectric measurement of relaxor PLZT 8/65/35
and 9.5/65/35 revealed relatively high, frequency-independent dielectric losses in the
102–109 Hz range below 250 K. This unusual dispersion can be well described by an
anomalously broad uniform distribution function of relaxation times. Below the freezing
temperature Tf the fluctuations (breathing) of boundaries of the frozen clusters, and reversal
of dynamical polar nuclei residing among the frozen clusters, can contribute to the dielectric
response. The latter mechanism is assumed to be dominant in the case of weak anisotropy.
Our description is based on the Landau–Devonshire free energy with the anisotropy term
characterized by the temperature-independentcoefficientβ2, which approaches zero value near
the morphotropic phase boundary. Disorder is encountered when considering the distribution
of β2 values. It leads to the distribution of the potential barriers, and consequently to the
distribution of relaxation times. The shortest relaxation time, which is determined by the
smallest value of β2, is nearly temperature independent near the morphotropic boundary, and is
comparable with the phonon frequency. On the other hand, the longest relaxation time follows
the Arrhenius temperature dependence and strongly increases on cooling. Finally, at low
temperatures the dielectric spectrum is stretched from the phonon range down to unachievable
small frequency values, so that the constant losses are observed in the whole experimental
window below phonon frequencies. The complex dielectric constant was explicitly calculated.
In order to obtain the linear temperature dependence of losses at low temperatures, freezing
of the relaxation processes with relaxation times longer than a cutoff value was considered.
This indicates that the model of independent dynamic polar regions fails at least at very low
frequencies.

We should stress here that the relaxor ferroelectrics represent a complicated disordered
system, and its description using simple concepts can lead to oversimplifications. We argue here
that our approach could be reasonable for structures with weak anisotropy, and with a relatively
high volume fraction of unfrozen dipoles. In the opposite case, when the dynamic dipoles
reside mainly at the grain boundaries only, the fluctuations of two-dimensional walls should
be the dominant mechanism. We suppose that our model can be used to explain frequency-
independent losses not only in PLZT ceramics but also in PMN and other relaxors. We expect
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that the same low-temperature effect could be revealed also in relaxor-like ferroelectrics (PMN–
PT, PZN–PT, etc) with a morphotropic phase boundary.

The weakly temperature-dependent dielectric losses in the submillimetre region could be
understood through the shear wave emission by polar cluster wall vibrations in an ac electric
field and by the piezoelectric resonances within polar clusters.
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[8] Kutnjak Z, Filipič C, Levstik A and Pirc R 1993 Phys. Rev. Lett. 70 4015
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[13] Careri G, Consolini G, Kutnjak Z, Filipič C and Levstik A 2001 Phys. Rev. E 64 052901
[14] Kamba S, Porokhonskyy V, Pashkin A, Bovtun V, Petzelt J, Nino J C, Trolier-McKinstry S, Randall C A and

Lanagan M T 2002 Phys. Rev. B 66 054106
[15] Land C E, Thacher P D and Haertling G H 1974 Electrooptic Ceramics (Applied Solid State Sciences) (Advances

in Materials and Device Research vol 13) ed R Wolfe (New York: Academic) p 135
[16] Haertling G H 1987 Ferroelectrics 75 25
[17] Darlington C N W 1989 Phys. Status Solidi a 113 63
[18] Colla E V, Chao L K and Weissman M B 2001 Phys. Rev. B 63 134107
[19] Burns G and Dacol F H 1983 Phys. Rev. B 28 2527
[20] Viehland D, Xu Z and Payne D A 1993 J. Appl. Phys. 74 7454
[21] de Mathan N, Husson E, Gavarri J R, Heiwat A W and Morell A 1991 J. Phys.: Condens. Matter 3 8159
[22] Chernyshov V V, Zhukov S G, Vakhrushev S B and Schenk H 1997 Ferroelectr. Lett. 23 43
[23] Kersten O, Rost A and Schmidt G 1983 Phys. Status Solidi a 75 495
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